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ABSTRACT. In this paper, we are concerned with the maximum flow problem
in the distribution network, a new kind of network recently introduced by
Fang and Qi. It differs from the traditional network by the presence of the
D-node through which the commodities are to be distributed proportionally.
Adding D-nodes complicates the network structure. Particularly, flows in the
distribution network are frequently increased through multiple cycles. To this
end, we develop a type of depth-first-search algorithm which counts and finds
all unsaturated subgraphs. The unsaturated subgraphs, however, could be
invalid either topologically or numerically. The validity are then judged by
computing the flow increment with a method we call the multi-labeling method.
Finally, we also provide a phase-one procedure for finding an initial flow.

1. Introduction. Consider the network G = (N, A,d,u) with N = Npg U Np U
Ng U Np U Np being the node set and A the arc set. The functions d : A — Q4
and u : A — Q. which take non-negative rational values, represent respectively
the minimum demand and the capacity on each arc. There are five types of nodes
in the network G: the S-node, the T-node, the O-node, the Pseudo-node, and the
D-node. The S-nodes are source nodes. They can be thought to all come from a
Pseudo-S-node. The T-nodes are termination (sink) nodes which can be combined
into a single Pseudo-T-node. The O-nodes are the intermediate nodes other than
the source and the sink nodes in the traditional network. The D-node is a very
special feature. Each D-node has only one inward arc through which the goods
must be proportioned to all its outward arcs at fixed ratios. It was first introduced
by Fang and Qi in [5] to describe some manufacturing and/or distribution processes.
Let the collection of each respective type be denoted by Ng, Nr, No, Npg, and
Np.
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FI1GURE 1. Refining crude oil

In a manufacturing case, D-nodes could be a distilling-like operation such as
refining crude oil. See Figure 1 for an example. The D-shaped nodes here represent
the distillation or cracking process, while the C-shaped nodes stand for the combi-
nation or synthesis processes. In this example, there are three S-nodes: S; is the oil
field outputs; Sy is the LPG or natural gas used to fuel the highly energy-intensive
refining processes; S3 provides hydrogen for hydrocracking. Among thousands of
resulting products, we name only some representative ones which include butane,
asphalt, gasoline, kerosene, lubricants, etc. Notice that petroleum products are
usually distributed proportionally from the refinery. The proportionality depends
on the geographical location, customer demand, and seasonal needs. Therefore, the
whole manufacturing process can be modeled as a multi-commodity network prob-
lem with D/C-nodes and there is a recent result on the minimum cost flow problem
by Mo et al. [10].

On the other hand, D-nodes could be used to describe the proportional allocation
of a particular commodity. This might happen when a non-proportional distribution
is not fair and a regulated proportional distribution is more desirable. Examples
include water resources in a drought area, power supply in a highly energy-intensive
industrial park, or the investment breakdown for a bunch of projects. Fang and Qi’s
original work in [5] deals with the minimum cost flow problem of this kind. For this
reason, it is called the distribution network.

In this paper, we are concerned with the maximum flow problem of the distri-
bution network. A feasible flow z in G is a rational-valued function x : A — Q4

satisfying
Z Ty = Z Tij, i € No. (11)
I€E(7) JEL(3)
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FIGURE 2. An example of a D-node

ZTs = Z Tsj, s € Ng. (1.2)
JEL(s)

> ww=m, teNg (1.3)

IEE(t)
Tij = kijxli, Z kz’j = 1,]%]‘ > 0, 1 E ND,j S L(Z) (14)

JEL(i)

0 < wy; Swj,  (i,5) € 4, (1.5)
0 <z < ug, s € Ng, (1.6)
0<d; < T, Vit € Nr, (17)

where E(i) = {l € N : (I,i) € A}, L(i) = {j € N : (i,j) € A}. At an S-node
s, we use an inward pseudo-arc ( ,s) € (Npg, Ng) to express the sources supplied
at s. The flow x5 on ( ,s) has the upper limit u,. Similarly, we use an outward
pseudo-arc (t, ) € (N7, Npg) to express the demand at a T-node t. The flow 2 on
(t, ) must satisfy the minimum demand d;. On any D-node i, we suppose F(i) has
one single node [, and the outgoing arcs from i satisfy the proportional constraint
(I.4). See Figure 2 for an example of a D-node. Notice that equations (I1.1))-(1.3)
are conservation constraints, while (1.5)-(1.7) are upper/lower-bound restrictions
on arcs.

Given a flow z, the value of x is defined to be v(x) = 7, . ;. Therefore, the
maximum flow problem in the distribution network takes the following LP form:

(P) max v(z)
st. zeF

where F' is the set of all flows satisfying constraints (L.1)-(1.7). We assume that
problem (P) is always feasible throughout the entire discussion. See Figure 3 for
an example of the distribution network. It has one S-node, five T-nodes, as well as
a couple of O-nodes and D-nodes in between. For each arc (i, j), there associates a
triplet (ui;,d;j, x;;) indicating the upper bound, the lower bound, and the current
flow value, respectively. The ratios for the proportional constraints can be read
from the network. For instance, through the node D; one has to distribute 80% of
the inflow to Os and 20% of which to Og.

In literature, there are some special flow problems related to (P). The generalized
flow problem (e.g., see [1]) has gain factors (k. > 1,e € A) or loss factors (0 < k. <
1) for arcs in A. If one unit flow from node ¢ to node j is sent through the arc
(4,7), ki; units will arrive at node j. In particular, if the arc (4, j) is lossy, namely,
0 < ki; < 1, one may introduce a dummy sink ¢ and set k; = 1 — k;; to make
the node i a “D-like”-node of two outgoing arcs. This formulation is not the same
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FIGURE 3. A distribution network

as our D-node since the dummy sink ¢, having no further outlets, violates the flow
conservation required by our model.

On the other hand, Cohen and Megiddo [4] discussed a class of parametric flow
problems in which the fized ratios flow problem is similar to (P). This problem
imposes an equivalence relation () on A such that for every pair (e;,e;) € Q, ., =
kijre;. In the distribution network, let arcs which are incident with a common
D-node be in the same equivalence class and also every single arc not adjacent to
any D-node be itself an equivalence class. Then, (P) becomes a fixed ratios flow
problem. Nevertheless, the result in [4] does not help much since (1) the algorithm is
strongly polynomial only when the number of equivalence classes is a constant. This
is surely too restrictive; (2) the strongly polynomial algorithm was proved through a
sequence of reduction from other problems. A practical and implementable version
of it was not studied.

It turns out that a network algorithm of (P) may not be easy to get. The D-
nodes introduce a great degree of dependency among a cluster of arcs so that search
algorithms on the network frequently generate cycles. Figure 3 demonstrates the
complication where the flow can (indeed must) be increased through a cycle. It
requires to reduce the amount to 75 by 4 units so as to obtain the net gain of 12.

Our goal is to generate every possible “unsaturated subgraph” Gjs of this kind
as in Figure 3 so that the flow can be increased from s to t iteratively until there
are no more such subgraphs. We implement a depth-first-search-based algorithm to
search on the associated residual network. The strategies of searching for G s will
be discussed in Section 2. In Section 3, we discuss cycles, some of which are valid
but some are not. In Section 4, a system of linearly homogeneous equations is used
to either solve the flow increment on Gjs or conclude that it is invalid indeed. In
Section 5, we illustrate the importance of searching orders with which every possible
Gy will not be missed. Section 6 describes our algorithm step by step. In Section
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7, a phase-one procedure based on the “reverse-run” of the algorithm is given to
find an initial flow. Finally, in Section 8, we conclude the paper.

2. Basic strategies of searching. Given a feasible flow z in G, construct the
residual network G, = (N, A, u,) as follows. Let

A, = AT UAL,
Al ={ala € A, z(a) < u(a)},
A, ={ala€ A,d(a) < x(a)} (@: areorientation of a),

_ [ u(a) —x(a), acAf,
um(a)—{ z(a) —d(a), @€ A;.

where u;(a) is the residual capacity of the arc a with respect to the flow x.

With the flow z, the algorithm begins with some s € N, which is incident with a
pseudo arc (,s) € Af. That is, s still has some available resources. Define M = {s};
Ay = {(,9)} so that Gpy = (M, Ap) = (s,( ,8)) is the initial subgraph of the
residual network G,. The G/ is maintained as a stack. At each stage in searching,
the algorithm examines arcs connecting with the topmost node in the stack and
includes into Gp; only one arc that keeps two major network properties, the flow
conservation and the proportionality at D-nodes. For example, if the topmost
node is ¢ and the algorithm is about to include the arc (¢,7), we push (7, (4,7))
into Gps. Similarly, we push (j, (4,7)) into Gy for including the reverse arc (j,1).
For convenience, denote the topmost entry in Gy as topMost(Gur) = (4, (4,7))
(or (4,(4,4))); the top most node as topMostNode(Gyr) = j; the top most arc as
topMostArc(Gyr) = (i,7) (or (j,7)); and finally denote the second to the topmost
node to be preTopNode(Gyr) = i. Also for the convenience in describing the
searching technique, we define arcs emanating from M to M to be forward (denoted
shortly by F) whereas a backward arc (B) is one that comes from M to M. In
combinations, there are at most four options at the topmost node i: (a) (F, A});
(b) (B, A} ); (¢) (B,A]); and (d) (F, A, ). See Figure 4.

The selection is to make any two consecutive pairs in Gj; meet the flow conser-
vation. Suppose topMost(Gr) = (i, (1,7)) is of the forward type and i € Ng|J No.
To keep the flow conservation on the residual network G,, one must also choose a
forward arc (i, j), either (F, Al) or (F, A ). Similarly, if topMost(Gr) = (i, (3,1)),
then at 7 it should be followed by any backward arc (j,4). In other words, the S-
and O-node have to be connected by both forward arcs or both backward arcs. See
Figure 5.
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FIGURE 5. O-nodes must be connected by two arcs of the same direction
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FIGURE 6. Four possible ways to enter a D-node

Suppose now ¢ is a D-node. Listed below in Figure 6 are four possible ways
to enter a D-node. Cases (3) and (4) do it from the top, while Cases (5) and
(6) from the bottom. Due to the special network configuration of a D-node, if
topMost(Gr) = (i, (1,7)) as in Case (3), all the adjacent arcs (4, ),k =1,2,...,n
must be of type (F, A}). In case (4), all arcs following ¢ must be of type (B, A} ).
In Case (5), (j1,1) is of type (B, A}) whereas the other (i,jx),k = 2,...,n are of
type (F, A}). In Case (6), (i,71) is of type (F, A;) but (jg,i),k = 2,...,n are of
type (B, A, ). This is very different from the generic augmenting path algorithm
on the classical network for connecting only O-nodes [1].

In the following advance phase, we shall apply repeatedly the cases (1)-(6) to
grow the unsaturated subgraph Gps. At topMostNode(Gyr), if there are no un-
marked (un-visited) arcs of the right type (meaning Cases (1) - (6) above) in G,
topMost(Gyy) is said to be saturated. Otherwise, we include into Gj; any one of
the desired arcs and leave others for the next G to exploit. This process continues
until it hits a pseudo node or forms a cycle (Step 2). In either case, the algorithm
pauses temporarily and switches to a “D-cut”. The D-cut is an arc (I,k) € G,
such that either [ or k is a D-node already included in Gjps but (I, k) itself is not
processed yet. If there is no such D-cut, the advance phase comes to a complete
stop and the Gy is called “complete”.

The advance phase

Step 1.: Use topMost(Gpr) to determine which cases, (1) - (6), are applicable.
Push any un-marked arc of the right type and its associated node into G ;. If
there is none, un-mark (release) the arcs adjacent to topMostNode(G ) for
later accesses via different paths. Go to the retreat phase (below).

Step 2.: If topMostNode(Gr) € Npg or topMostNode(Gyr) € M, look for the
D-cuts of the right type by Cases (3)-(6). Push any such arc and its associated
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FIGURE 7. FIGURE 8.

node into G'j;. Go to Step 1. If there is none, a complete G, is obtained and
the advance phase is stopped.
Step 3.: Go to Step 1.

In Figure 7, the advance phase first constructs the path, in this order: — S —
Dy —» Dy — Ty — until ( (T}, )) is pushed into Gps. Then, there are two D-
cuts, (D1,0) and (D3, T5), in which we used to choose the nearest one, (D, T5),
to continue. In Figure 8, we start from S; but have to stop temporarily when
topMost(Gpr) = (,(S2, )). The search resumes from the D-cut (D, T).

When there is no un-marked arc of the desired type adjacent to topMostNode(Gar),
the following retreat phase is applied. The strategy is to pop out the saturated
topMost(G ) depending on whether preTopNode(Gyy) is a D-node. If it is indeed
a D-node, all the arcs in G; generated after that D-node should be released due
to the proportional constraint.

The retreat phase

Step 1.: If preTopNode(Gpr) ¢ Np, mark and pop out topMost(Gyr). Go to
the advance phase. If G = 0, stop and report the current flow is maximal.

Step 2.: If preTopNode(Gpr) = 1 € Np, keep popping out the entries in Gy
one by one until we find topMostNode(Gpr) = 1. Go to Step 1.

Note that, marking the removed topMost Arc(Gps) at Step 1 of the retreat phase
is a tracer for arcs that have been visited and discarded from topMostNode(Gar).
The tracer is reset when this topMostNode(Gyr) is to be released (“un-mark” at
Step 1 of the advance phase). The reset is necessary since this topMostNode(G )
could be later included into a different G ;.

When a D-node is to be released, we can replace the capacities {u;;| i € Np,j €
L(i)} with the current flow values on {(i,j)| ¢ € Np,j € L(i)}. The updated
capacities have now the same proportions as k;;. By this, if any arc of {(4, )| ¢ €
Np,j € L(i)} is saturated, so are the others. The same D-node hence will not be
processed repeatedly by way of different entries to it.

3. Cycles. In searching Gjs, we could generate cycles by adding an arc of the
form (M, M). Unlike the classical maximum flow problem where one has choices to
generate (e.g. the pre-flow push method [I]) or not to generate (e.g., the labeling
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F1GURE 9. The cycle in a distribution network

F1cure 10. Cycles that are topologically invalid

method) cycles, we may not have an option in the distribution network. This can
be best illustrated by the example in Figure 9. Observe that (O3, T3) is already
saturated. To increase the flow, (D,T7) is the only way. By the proportional
constraint, Gy must contain both (S, D) and (D, Os). At O, the only arc of the
right type is (O2,01) (in the residual network G,). Then, (Oq,S) is included and
the cycle must be formed.

Nevertheless, cycles can have an obvious defect in the configuration, which we
call topologically invalid. In Figure 10, the cycle (,1,7,1) consists of only O-nodes.
Due to the conservation law, the cycle must have the O-flow and then becomes
useless. On the other hand, the directed cycle (D1, Dy, O1, D3, D1) is topologically
invalid since the arc (Ds, D1) is of the right type for D3 but is of the wrong type
for D;. See Figure 11 for more examples of invalid cycles. On the left, the cycle
(O1,042,D,01) can be thought as an integrated node with only two incoming arcs
but no outgoing arcs. The conservation law will certainly make the flow in the cycle
be 0-increment. On the right of Figure 11, the cycle is topologically legitimate but
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FicURE 11. Cycles that are topologically invalid and numerically invalid
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FIGURE 12. Circle the D-node to indicate the first time it entered Gy

numerically invalid. Look at (D7, O3). The flow out of D; is 5a, but it needs 8a to
meet the need at Os. This happens because several D-nodes of contradicting ratios
are grouped together by the search algorithm.

In general, we are not able to identify all patterns of invalid cycles. However, we
observe that the invalid cycles, topologically or numerically, result in 0-increment.
Our strategy is to always form the cycles and continue the search from the (nearest)
D-cuts until a complete G is generated. The validity of Gj; can be determined
after the flow increment on a complete G is computed. (next section)

In Figure 12, suppose we first formed the cycle - S — Dy — Oy — Dy — S.
Then, use the D-cut (O3, D2) and (Dy, O2) to form the second cycle. Continue from
the D-cut (D7, O3) but there was no arc of the right type ahead. Then, the retreat
phase discarded all the arcs and nodes related to Dy until topMostNode(Gpr) = Ds.
The circled entry in the stack G indicates the very place where the D-node was
first included. There are two D-nodes in this example.

4. Determining the flow value on G);. Suppose now we have a complete G
that reaches at least one T-node with an A}-type pseudo-arc. In this section, we
show how to compute the flow increment on G;.

Recall the s — ¢t augmenting path of the labeling method. Each node, except for
the beginning and the ending node, has exactly two adjacent arcs. Knowing the
flow increment on any arc of the path implies knowing that on all the others. For
G, however, there are O-nodes having more than two adjacent arcs. See nodes S,
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FIGURE 13. The residual network (left) and its compatible com-
ponents (right)

T1, and O; on the left of Figure 13. We call S, O, T-nodes having more than two
adjacent arcs in G s to be dividing, while those with exact two be regular.

To better understand the structure, we need more definitions. An undirected
simple path (u1,us, ..., u,) is said to be compatible if (i) uy, u, are the dividing node
or the pseudo node; (ii) u;, 7 # 1,n, are D-nodes or regular nodes. The compatible
path can be viewed as a generalization of the conventional s —¢ augmenting path. In
particular, knowing the flow value on any arc of a compatible path implies knowing
the values on all the other arcs. For instance, the path Py : (S, D3, Dy, O3, T35, ) is
compatible, while the path P, : (S, D3, O1, Do, T1) is not since O is a dividing node.
On Py, suppose the flow on (Ds, S) is b, then the flow on (D4, D3) and (O3, D4) will
be 0.5b and 0.2b, respectively. However, on P, assuming the flow on (D3, S) to be
b implies 0.5 on (01, D3). The information is insufficient to determine the flow on
(D2, Oy) since there is another arc (01, D4) ¢ P> connecting to the dividing node
O;.

More generally, we shall call two arcs (i1, j1) and (i3, j2) compatible, denoted by
(i1,71) ~ (i2, j2), if they are on the same compatible path. It is easily seen that the
compatibility “~” defines an equivalence relation on A, which is thus partitioned
into several compatible components. See the right picture in Figure 13 where there
are four compatible components. In each component, if the flow value is determined
for one arc, so are the others. For this reason, the flows on each component can be
expressed in terms of a single independent variable (label), so we call it the multiple
labeling method.

In Figure 14, the four components join with each other at three dividing nodes.
By the conservation law, at S we have ¢+ b = a. At O1, we have 0.4a = 0.5b+ 0.3b
and at T7, we have 0.6a = d. They can be further simplified to become b = ¢ = 0.5a
and d = 0.6a with which the four components are represented by just one variable a
multiplied by a constant, say 7;;a. Determine the value a by solving r;;a < u;; with
the residual capacity u;;. Taking the minimum of %] yields the largest possible
flow that can be increased on Gj;. In this example, a = 20.
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FIGURE 14. All arcs in Gp can be expressed by r;ja (left) and
take the minimum of 7:”7 to get x;; (right)

In general, if there are n compatible components and m dividing nodes, the
conservation law at the dividing nodes gives a system of m linear homogeneous
equations with n non-negative unknowns. This system has at least one trivial
solution (0,0,...,0). But in order for Gj; to be valid and useful, we need the
system to have a positive solution. To this end, it is necessary that m < n — 1,
providing that the system is of full rank.

Suppose that m > n. Then, choosing n linear independent equations out of m
and solving the n unknowns will give a unique zero solution. Figure 15 is such an
example in which m = n = 2. The two dividing nodes are S and O; and the two
equations are a + b = a and 0.4a = 0.6a. The unique solution is a = b = 0.

Figure 15 also provides an interesting example for the dividing node which we
call degenerate. From the definition of compatibility, two compatible components
must be connected at dividing nodes. This example shows the converse is not
necessarily true. The dividing node O; in Figure 15 is not the junction node of
different components. The conservation constraint at O; forces the flow to be 0.

If m = n — 1, the system has one degree of freedom and the flow on Gj; can
be expressed by one single variable. Unfortunately, the non-negativity restrictions
could still be violated. Figure 16 provides such an example. On the left is the
original network, whereas on the right is the G;. Node S is the only dividing node
and there are two components. The equation at S is b = —5a. Only (a,b) = (0,0)
satisfies the non-negative restrictions, so the G, is not valid.

Finally, we briefly discuss the case m < n — 2 which gives us at least two degrees
of freedom to determine the flow increment. Using our strategy of searching, we
can not find a particular Gj; having this phenomenon, nor can we prove that it
is not possible. We can only conjecture that it is very unlikely since we form the
cycle at the dividing node without penetrating to go on. Besides, if we do have two
degrees of freedom from the equations, it might indicate that there are two chunks
of components that are independent of each other and can be treated separately.
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FIGURE 15. An example of degenerate dividing nodes
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FIGURE 16. An example of the negative total flow increment

5. Searching orders among D-cuts. In the advance phase when an O-node is
encountered, every adjacent arc in G, has to be checked and marked to guarantee a
unique visit. However, when meeting a D-node, we arbitrarily choose one adjacent
arc to continue and leave the others as D-cuts which must be all checked in whatever
order. It is surprising to see that some valid G ; can be obtained only if a particular
order among the D-cuts is followed. To illustrate the importance of searching orders,
let us work out an eccentric example as shown in Figures 17 - 19. The numbers
circled nearby the arcs indicate the searching order in constructing the G, .
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FIGURE 17. An example for the importance of the searching order
of D-cuts

Figure 17 is the target problem together with its residual network. Suppose the
search began with — S — Dy — Q4. It follows that there are only two Gjs’s
as shown in Figure 18 that could result from this condition. Both are invalid. In
particular, the left one in Figure 18 contains no pseudo arc of A}, while the right
one even fails to reach any pseudo-arc.

In fact, a valid Gy must include either (T3, ) or (T3, ). However, since (O, O1)
is of the wrong type, there is no way to reach (77, ). To get the other pseudo arc
(T3, ), one must enter T from Os rather than from O3 because the two arcs (Os, T5)
and (T3, ) are of the same direction whereas the other pair (T, O3) and (Ty, ) are
not. See Figure 19. Similarly, suppose Gj; commences from — S — O; — Dy.
There are three options at Dq: (D1,S),(04,D1) and (O3, D). To reach Ty from
Os, (O4, Dy) must go ahead of (O3, Dy). The reverse order, i.e., (O3, D7) in advance
of (O4, Dy), will not do.

Therefore, when retreating a D-node from a complete Gy, it is necessary to
enumerate all possible searching orders among the D-cuts. For example, the D-node
in Figure 20 has three D-cuts. The six combinations have to be totally examined
before we can safely discard it in the retreat phase. In general, if a D-node [ has ¢
adjacent arcs, there are € — 1 D-cuts and (¢ — 1)! searching orders to explore.

6. The algorithm. Our search method is a depth-first-search-based algorithm. It
claims the maximum flow z after exploiting every possible Gj; on G,. The data
structure of GG is a stack. Each stack, when finished, is like a path from the root
to a leaf in a depth-first-search tree. Starting from Gy = (s,( ,s)) (the root),
the advance phase repeatedly searches for an unsaturated arc until it hits either
a T-node, or a S-node, or forms a cycle. If there is a D-cut, the search has not
reached a leaf yet and has to be continued from any one of the D-cuts. Otherwise,
the search is complete and a path from the root to a leaf is found.

The retreat phase is equivalent to the backtracking mechanism of the depth-first-
search algorithm. It applies either when the top most entry in G is saturated or
when it is already completed but the resulting Gy, is invalid. To distinguish, we
set the former to Flag = UC, while the latter Flag = C.
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FIGURE 18. From (D3, O4), we can only obtain invalid G/’s

FIGURE 19. The only way to get (T3, ) is to come from Os, not Oy

In the retreat phase, if the preTopNode(Gys) is not a D-node, it pops out the
topMost(G ) and starts off the advance phase from the earliest possible un-marked
arcs of the right type (Step 3 of the following algorithm). If preTopNode(Gyy) is a
D-node, it pops out every entry in G all the way to the place where the D-node
was first visited. Then, if it is of Flag = C, we have to check all other orders among
the D-cuts and resume the advance phase (Step 5). Otherwise, for Flag = UC,
we continue the retreat phase by going back to Step 3. The reason is that, if one
searching order could not successfully lead to a leaf, it must be saturated at some
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FIGURE 20. All searching orders among the D-cuts

place. The saturation can not be got away by trying other searching orders among
the D-cuts.
Below is the step-by-step procedure of our algorithm.

The Algorithm

Step 0.: (Initialization) Un-mark all the arcs. For each d € Np, set Flag(d) =
UC'. Enumerate all searching orders among the incident arcs of d. Determine
any order, say w(d), to begin with. Let s € N and ( ,s) be a pseudo-arc of
type AF. Push (s, (,s)) into the stack G-

Step 1.: (Searching repeatedly for unsaturated arcs) If topMostNode(Gyr) €
Ns|JNo, select any un-marked arc according to Cases (1)-(2) and push it
into Gpr. If topMostNode(Gpr) € Np, select and push the arc following
the pre-determined order as well as Cases (3)-(6). Redo Step 1. If all the
arcs incident to topMostNode(G ) are either marked or of the wrong type,
un-mark (release) the arcs adjacent to topMostNode(Gyr). Go to Step 3.

Step 2.: (Searching from a D-cut) If topMostNode(Gyr) € Npg or
topMostNode(G ) € M, look for the D-cuts using the pre-determined order.
If the next D-cut is of the right type by Cases (3)-(6), push it into Gps. Go
to Step 1. If there is no D-cut, a complete GG is obtained. Go to Step 6.

Step 3.: (Backtracking from non-D-cuts) If preT'opNode(Gar) ¢ Np, mark and
pop out topMost(Gpr). Go to Step 1. If Gpr = 0, stop and report the current
flow is maximal.

Step 4.: (Backtracking from D-cuts) If preTopNode(G ) =1 € Np, keep pop-
ping out the entries in Gjs one by one until we find topMostNode(Gyps) = L.
If Flag(l) = UC, Go to Step 3. Otherwise, go to Step 5.

Step 5.: (Backtracking from D-cuts using different orders) If there is any un-
used order for the current D-node, pick one and go to Step 1. Otherwise, go
to Step 3.
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Step 6.: (Compute the flow increment) Use the multi-labeling method in Sec-
tion 4 to determine the flow increment on Gj;. If the value is positive, update
the current flow to come out with a new residual network. Go to Step 0. If
the value is 0, set every D-node in Gy with Flag = C and go to Step 3.

The backtracking strategies in Steps 3 - 5 carefully check backward for a new
search off the nearest available node in the stack under different situations. The
maximum flow x is found when the search eventually ends with G; being an empty
set. This guarantees a complete search for all the subgraphs on the residual network
and thus provides the correctness for the algorithm.

In general, we are unable to guarantee that the same Gj; will never be produced
again since the same cycle could be formed through different orientations (Gps’s).
The depth-first-search is thus in a sense of the data structure, not in a sense of the
configuration.

7. Initial flow. In this section, we address the phase-one procedure that finds
an initial flow on a distribution network. It is not a maximum flow problem. The
difficulty occurs especially in the positive lower bounds d; > 0. Take Figure 21 as an
example. The maximum flow is a = 50 but T3 receives nothing from this allocation
whereas 77 and T3 obtain something more than enough (dy, = dp, = 20). If they
were otherwise supplied by an amount between 20 < a < 25, T5 would be satisfied
as well. This shows that the flow balance among T-nodes, rather than a larger flow
value, is more critical in the phase-one.

Let us begin with the O-flow and suppose some positive lower bounds on the
T-nodes are violated. Add dotted arcs to those T-nodes and associate each T-node
with a negative number —n,n > 0 to indicate that the current flow on the T-node
is short of n. See nodes 11,75 and T3 in Figure 21 for an example.

The strategy is to run the searching algorithm “upside-down” starting from any
T-node having a dotted arc. It means to use (7, (T, )) as the first entry and search
for a complete Gy (compared with (S, (,.5)) when starting from S). See Figure 21
for an example in which the flow increment on Gy is a = 50.

After updating the flow by a = 50, we found T3 is the only T-node with insuffi-
cient supply. See the dotted arc on the leftmost graph of Figure 22. Starting from
T5, we apply the advance phase to obtain the path « 15 «— O « 11 «— with a = 30,
as shown in the middle graph of Figure 22. In fact, this path « Ty « O1 «— T «
reallocates 30 from T to T» so as to achieve a feasible flow (the right most graph).
It could not be accomplished if the search had started from the S-node, since the
bottle neck arc (O1, D) is not of the right type. This example shows the necessity
of searching from the bottom for finding the initial flow.

8. Conclusion. In this paper, we present a search algorithm to solve the maximum
flow problem in the distribution network. It is of the depth-first-search type which
explores all searching orders so as to identify every valid G;. Although the search
strategy may not be very efficient, the examples we provide are the most represen-
tative ones showing the necessity to enforce this kind of complete enumeration on
graphs. The algorithm also comes with various graph techniques such as computing
the flow increment and finding an initial flow, making it ready for implementation.
We believe that the study conducted here is very original and illustrates important
graph properties with the appearance of the D-nodes and the cycles.
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FIGURE 22. Reallocation of outputs between T} and T,

There are several interesting research directions afterward. Finding a more in-
telligent algorithm to avoid the complete enumeration is definitely at the top of the
list. Establishing the fundamental graph relation of the maximum flow - minimum
“cut” (with a new definition for the “cut”) is also primary among many others.
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